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S U M M A R Y  
The present paper is concerned with the static theory of anisotropic and inhomogeneous micropolar elastic solids. 
The operator of micropolar elasticity is considered and the positive definiteness of this operator for the first boundary 
value problem is proved. This fact leads to the existence of a generalized solution and to the applicability of the varia- 
tional method [1] to this problem. 

1. Introduction 

In the last time some variational theorems and existence theorems in the linear theory of 
micropolar elasticity were derived. In the dynamic theory the general variational principles 
were established in [2-5]. In [-6] the static theory of anisotropic and inhomogeneous micro- 
polar elastic solids is considered. The existence and uniqueness of a weak solution of the 
boundary value problems is derived and some variational principles are established. Using 
the fundamental solutions, in [-7], was proved the positive definiteness of the operator of 
micropolar elasticity for the first boundary value problem in the case of isotropic and homo- 
geneous bodies. The existence theorems of the classical solutions are derived in [-8, 9]. 

In this paper we consider the first boundary value problem in the static theory of anisotropic 
and inhomogeneous micropolar elastic solids. We prove, in a simple manner, that the operator 
of the micropolar elasticity is positive definite. From this fact it follows the existence of a general- 
ized solution [-1] and the applicability of the variational method developed in [1] to our problem. 

2. Basic equations 

Let us consider a finite region Q of three-dimensional space, bounded by the surface S. For 
simplicity we assume the surface S to be piecewise smooth. Throughout this paper a rectangular 
coordinate system OXk (k = 1, 2, 3) is employed. 

The basic equations in the static theory of anisotropic micropolar elastic solids are [10] 

equilibrium equations 

t j i , j+ f l  = O, mj i , j+ei jk t jk+ Ii = 0,  (2.1) 

constitutive equations 

tij = Aijklekl + BijklZki , mij = Bklijekl + Cijkl~kl , (2.2) 

geometrical equations 

e i j=  Uj, i+-ej ikq? k , Zij = q)j,i �9 (2.3) 

In these equations we have used the following notations : tij : components of the stress tensor, 
mij : components of the couple-stress tensor, f~ : components of the body force vector, I i : com- 
ponents of the body couple vector, ui: components of the displacement vector, ~o~: components 
of the microrotation vector, e~j, zij: kinematic characteristics of the strain, eijk: alternating 
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symbol, AijkZ, Bijk~, Ciik~: characteristic coefficients of the material, the comma denotes partial 
derivation with respect to the variables xv 

We have 

Aijkl  = Akl i j  , Cijkl = C k l i j .  (2.4) 

We will assume that the coefficients Aijkl(X), B~jkt(X ), C~jk~(x ) are continuous and continu- 
ously differentiable in a closed region which contains the elastic medium. 

The surface tractions and surface couples acting at point x (Xk) on the surface S are given by 

ti = tjlnj , m i = mjinj  , (2.5) 

where nj are the direction cosines of the outward normal to S at x. 

3. The operator of the micropolar elasticity 

From (2.1)-(2.3) we obtain the field equations of the static theory of micropolar elasticity in 
the form 

A i u  - - - f / ,  Aa+iU = li , (3.1) 

where we used the notation 

I"/ = (Ul ,  /22, /23, (Pl,  (P2, (/)3) ~ (b/i, (P i ) ,  (3 .2)  

a n d  we introduced the operators 

A i t l  = --  ~X-~ (A j i k l  ~x~  "-]- Bjikl  -}- Ajikl~lkmCPm ' 

A 3 + ~ b / -  Bu~  yxk  + C ~  Tx  k + Bk~j~e~k,~o,~ -- 

Ou~ ~q~ax--~ eijk e~,, Ajk~ ~0 m . (3.3) - eij Ajk,  F x  " - - 

If we note 

f =  ( f~ , f2 , f3 ,  lx, 12, 13), A u  = (A~u, A2u ,  ..., A6u), (3.4) 

the system (3.1) can be written in the form 

A u  = f . (3.5) 

The differential operator A is the operator of the micropolar elasticity. 
Let us consider the body subjected to two different systems of elastic loadings and the two 

�9 (~) (~) (~) (~) (~) (~) corresponding states C = {u, ,r , e i j ,  t i j ,  mij ), (~ = 1, 2). Using (2.1)-(2.5) and the divergence 
theorem we obtain 

+ m ,  ( f ,  b/, / = 
S ~ �9 

where 
2 U 1 2  t(-.1) P(.2) 4- re( l )  ~ (2) 

A .~(1) ~(2) • it~ {0(2) ~.,(1) • ~(1) ~.(2)] ..l- ~ ~..(t) ,w(2) 
~- /~-ijklr'kl r'ij ~ 'u i jk t l ,~ i j  "'kl ~ e'ij "t'kI t~ 'Ji , ik l""kl  ~i j  " 

If we consider the vectors 

a = (al, a2 . . . . .  a6), b = (ba, b2 . . . . .  b6), 

we will denote by ab the scalar product 
6 

ab = ~ a ib i .  
i=1 
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Positive definiteness of operator of micropolar elasticity 

If we denote 

u = (ul 1~, go! ' ) ,  v = (u~2~, go~2~), u , ~  = v ( ~ ,  v ) ,  
p(.) = (t?~, m~'), p(v)= (t~ ~, m?~), 

the relation'(3.6) can be written in the form 

fsVp(u)dx + f v A u d x =  2 ir U(u,v)dx.  

.From (2.4), (3.7)it follows that 

2 U (u, v) = Aijkl ek, (u) eij (v) + Bijkl (eij (v) Xkl (U) +eij (U) ~kl (V)) + 
+ CijUZkt(U ) Xij(V) = 2 U (v, u), 

so that from (3.10) we obtain 

f~ (uAv-vAu)dx  = Is [vp(u)-up(v)]dx . 

If we denote U(u)= U(u, u), from (3.10) we get 

109 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

f~ uAudx = - is up(u)dx+2 f~ U(u)dx.  (3.13) 

We assume that the internal energy density U (u) is a positive definite quadratic form. Thus, 
we can write 

2 U (u) = A~ikl e o ekz + 2 Bok I e,j • + 
3 

+Cimzij~kZ >>.C ~ (e2+~2~), (c > 0 ,  c = const.). (3.14) 
i, j=  1 

The fact that in the linear theory the internal energy density is a positive definite quadratic 
form was intensively used in the classical theory of elasticity (see e.g. [1], [11-13]) and in 
the theory of elastic materials having a microstructure (see e.g, [14], [6], [7]). 

We will consider the first boundary value problem of the micropolar elasticity theory, 
defined by the boundary condition 

u =- (u,, go,) = 0 on S .  (3,15) 

Let us consider the question of the uniqueness of the solution. The difference uo = (u ~ goo) 
of two solutions of the problem satisfies the homogeneous boundary condition and the homo- 
geneous equation Auo = 0. From (3.13) we obtain 

f :  V(.o)dx = o. (3.16) 

By virtue of the positive definiteness of the form U(uo) it follows that 

ei~(Uo) = 0 ,  xo(Uo)= 0 .  (3.17) 

From (2.3), (3.17) we get 

u ~  ~ o goo= ~ o o = , -~ei,,, u . . . .  goi,j = 0 ,  (3.18) 

so that 

u ~ = a,+e,j~bjx k, go~ i = b,, (3.19) 

where a, and b, are arbitrary constants. 
In the first homogeneous problem the boundary of the body is fixed so that 

u0 = 0 in ~2. (3.20) 
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4. The positive definiteness 

Let us consider the equation 

Au = f , (4.1) 

where A is a linear operator in a given real Hilbert space, a n d f  and u are elements of the same 
space. It is known (see e.g. [1] ) that ifA is positive definite, then the equation (4.1) has a general- 
ized solution which minimizes the functional 

F (u) = (Au, u ) -  2 (u, f ) .  (4.2) 

The domain of this functional is a new Hilbert space which is the closure of the domain DA 
of the operator A in the metric generated by the scalar product (Au, u). 

The operator A defined on the lineal Da, which is dense in the considered Hilbert space, is 
called positive if 

(Au, v) = (u, Av) for any u, v~Da , (4.3) 

(Au, u) >I O, for any u e D A , 

(Au, u) = 0 only holds for u = 0.  (4.4) 

J?he positive operator A is called positive definite if for any u e D A the inequality 

(Au, u) >i y z [lull 2 , (4.5) 

holds, where Y is a positive constant. 
In what follows we consider the operator of micropolar elasticity. We consider the real 

Hilbert space L :  (f2), whose elements are vector-functions which are square summable in f2; 
the scalar product in this space is defined by 

f f '  (u, v) = uvdx = • (u,v,+q~,Oi)dx , (4.6) 
f2 i = l  

where u = (ui, q)i), v= (v,, Oi). 
We denote by Mo the set of vector functions u (x)= (u~, go~)in this space which are continuous 

and twice continuous differentiable in 0 and vanish in some boundary layer f2o ; as usual, the 
width (5 of the layer can depend upon u. 

From (3.12) it follows that the operator of micropolar elasticity theory is symmetric on the 
set M o. Moreover, using (3.13), (3.14) and (3.20) it follows that the operator A is positive on 
the set M o. 

Let us prove that the operator of micropolar elasticity theory is positive definite on the set 

MO 
If ueMo,  from (3.13) we have 

(Au, u )= ( uAudx = 2 ~ U(u)dx. (4.7). 
d F2 .] 

Using (3.14), (4.7), we get 
3 

(Au, u)>~c I E ( e ~ + ~ ) d x .  (4.8) 
1"2 i , j = l  

Taking into account (2.3) we can write 

ei~ = 7ij+ eija (Yk-- Ok), (4.9) 

where 

1 (4.10) 2 7 i j  = U i , j ~  Uj, i ,  ~k ~-" 2gklmUm,l " 
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We have 

3 3 

e 2 = Y,  {75-l-2Tijgijk(Tk--(Pk)-}- [~ ' i jk(~k--~gk)]  2} : 
i,j= l i,j= l 

3 3 
= S {~2+[~' i jk (~Jk--qOk)]2}  ~ ~ ~)2j, (4 .11 )  

i , j=1 i , j = l  

so that 

(Au, u) >~ c ~ [7~+(q~i,i)2]dx. (4.12) 
i , j = l  

Obviously, in our case the following lemma due to Friedrichs 

: f a u~ dx <~ cl (Ui,k) edx + , Cl > 0 ,  Cl ---- const. , (4.13) 
i= l  ~ i , j = l  

becomes 
3 

f a i~1 u2 dx<~ci fa i,k~l (ui 'k)2 dx. (4.14) 

Using (4.14) and the first Korn's inequality [1] 
3 3 

f 2 (Ul,k)2dx<~c2 f 2 ?~dx, c 2 > 0 ,  c 2 = c o n s t . ,  (4.15) 
I'2 i,k= l 12 i , j = l  

we obtain 

f ~ ?~jdx>~caf u~dx; c 3 > 0 ,  c a = c o n s t .  (4.16) 
~2 i,j= l f2 i= l 

If we apply the lemma (4.13), we get 

) c, (q)i,k)2dx ; c4 > 0 ,  c4 = const. (4.17) 
I2 i=1  f2 i,k= l 

From (4.12), (4.16) and (4.17) we find that 
(. 3 

(Au, u) > Co I 2 (u~+q~2) dx = collull2 ; Co>0, Co= const. ,  (4.18) 
J O i=1 

that is, the operator of micropolar elasticity theory is positive definite on the set M o. This fact 
enables us to introduce in M 0 the scalar product 

[u, v] = (Au, v) = t~ [Aijkl eu (u) eij (V) "}- Sijkl (eij (V))s (hi)"~- 

+ eij (u) ~k, (V))+ Cijkt Z, 1 (U) ~k, (V)] dx, (4.19) 

and then complete M o relative to this scalar product. 
We denote this space by/- / i  and we consider the problem: to find a vector i n / / i  which 

satisfies the equations of micropolar elasticity theory. This problem leads E 1] to the following 
variational problem: to find a vector in HI which minimizes the functional 

F(u) = [u, u ] -  2(u,f) = i [A,jk'eu(u)eii(u) + 
2 

+ 2 Bijk, eij (u) ~k, (U) + Ciik, ~ii (U) ~k, (U)-- 2 Uifi-- 2 ~i li] dx. (4.20) 

The solvability of this minimization problem follows from the positive definiteness of the 
operator a .  The vector u which minimizes the functional (4.20) satisfies the equation (3.5) and 
the boundary conditions (3.15) in a certain generalized sense [1]. 
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